Archive for the ‘spaces’ Category


Survey instrument: digital workers’ preferences of informal learning opportunities in socio-technical learning ecosystem

January 12, 2017

The survey was developed based on the informal learning interactions in workplaces described by Ley and associates [2014]. The survey items elaborated possible socio-technical system functionalities using the ideas from the prototypes of Learning Layers tools. The online survey comprised of three groups of statements that represent the socio-technical learning system dimensions for informal learning at work:

  1. Sensemaking statements: Learn & organize knowledge (11), Share knowledge (5), Annotate knowledge (5)
  2. Scaffolding statements: Search Resource (3), Find Resource (2), Awareness of resources (5), Find expert (4), Share help requests (2), Get expert Guidance (6)
  3. Knowledge maturing statements: Accumulate knowledge in system (5), Co-construct knowlede (7), Validate resources and experts with technology means (5)

ANNEX. Survey: Socio-technical learning ecosystem opportunities for informal workplace learning

Learn and Reorganize knowledge

  • I find it useful identifying learning needs at work using the computer support
  • I find it useful revisiting the exciting learning moments later on
  • I find it useful taking records (notes, memos, reminders, photos, videos etc.) to capture my learning moments at work
  • I find it useful that learning records captured at work could be used for further learning.
  • I find it useful organizing the records of my learning moments into meaningful learning episodes
  • I find it useful making records of which tools/resources I have used at work
  • I find it useful reflecting (writing, audiotaping etc.) about learning records to make sense of what was learned
  • I find it useful organizing records of learning into personal portfolio
  • I find it useful collecting into personal portfolio learning resources about interesting topics
  • I find it useful composing different views of records in portfolio for different purposes.
  • 5I find it useful learning from videos of good practice and failure created by others

Annotate knowledge

  • I find it useful adding keywords/notes to my learning records
  • I find it useful organizing learning records/resources with tags/keywords suggested by the system

Share knowledge resources

  • I find it useful that my reflections about learning will become part of shared resources
  • I find it useful that author can decide the access and sharing rights for each record in the personal portfolio
  • I find it useful that each document could be shared with others for learning purposes
  • I find it useful sharing documents/folders with other professionals for learning
  • I find it useful sharing documents with other professionals across workplaces

Search knowledge resources

  • I find it useful searching the latest information about the topics of my learning interests
  • I find it useful using mobile devices for searching learning materials directly at work
  • I find it useful searching suitable learning materials from the shared system

Find knowledge resources

  • I find it useful finding learning materials related to my work easily during working
  • I find it useful to access my previous learning records when I need them during work

Awareness and recommending

  • I find it useful to get automatically notices about shared resources and learning activities of other professionals in my field
  • I find it useful to get automatical notices about the modifications of certain normatives or guidelines
  • I find it useful discovering new learning interests by getting notifications of learning interests and needs of others
  • I find it useful getting system suggestions of the most relevant learning materials that other users have considered useful
  • I find it useful using guidance materials created by other learners

Find expert

  • I find it useful expanding social networks with new experts
  • I find it useful of requesting help from my social network at work
  • I find it useful identifying trustful learning experts by their rank of the quality of help they have provided
  • I find it useful getting suggestions to expand my social network with relevant experts who can provide guidance

Get expert guidance

  • I find it useful negotiating problem/task context while receiving/providing guidance
  • I find it useful getting less guidance when competence increases
  • I find it useful mainly receiving guidance how to better organize my learning activities at work
  • I find it useful mainly receiving hints how to make sense of new knowledge in work context
  • I find it useful being guided by experts in using collective resources
  • I find it useful being guided by experts in using the objects and tools at work

Share help requests

  • I find it useful seeing the help requests from others that match with my expertise
  • I find it useful sharing the help requests in my social network to locate most relevant experts


Co-construct knowledge

  • I find it useful co-constructing new learning resources from different people’s contributions
  • I find it useful that learning resources can be improved by incorporating different viewpoints from experts
  • I find it useful that learning resources can be improved by integrating related resources
  • I find it useful improving official descriptions of work processes, normatives and guidelines by local networks of experts
  • I find it useful discussing normatives and guidelines locally among experts
  • I find it useful creating knowledge of work processes as a result of many contributors‘ efforts
  • I find it useful collecting knowledge of good guidance and support from actual guiding practices at workplaces

Validate with technology means

  • I find it useful that other professionals in the network can rate learning resources
  • I find it useful that other professionals in the network can endorse my competences
  • I find it useful endorsing personal expertise by networking peers
  • I find it useful rating or commenting learning materials from my task context to make them better contextualized
  • I find it useful rating experts based on provided guidance

Accumulate knowledge

  • I find it useful that everyone’s learning events can be automatically traced
  • I find it useful that each tool and learning material has digital records and use-histories.
  • I find it useful that digital documents would capture discussions about learning episodes around them
  • I find it useful that learning resources can collect discussions about them
  • I find it useful that learning resources can be improved by accumulating their use-histories
  • I find it useful that normative guidelines at work would consist of ‚official‘ immutable and ‚inofficial‘ mutable content
  • I find it useful influencing the collective knowledge by personal notes
  • I find it useful accessing the use-histories of objects, tools or digital learning resources

Coherence and consistency in ecological learning

December 22, 2015

I have found an interesting PhD thesis by Jornet, Alfredo(2014)

that reminded me my ideas of conceptual coherence and consistency in one paper that never was published. There in 2006  i wrote about conceptual coherence the following:

The definitions of conceptual coherence often combine the cohesiveness and consistency properties of conceptual knowledge. Coherence is a definition that is applicable for characterizing the states of the elements of some larger units (eg. phenomenological primitives, epistemological resources). Coherence is also related to the contextual and time-related dimensions. Cohesiveness is the property characterizing the conservation of inherent relationships among ideas in one explanation framework or the links among several related conceptual frameworks. Consistency is defined as a property indicating that students’ explanations of a certain phenomenon are stable, independently of the variable contexts that depend on the viewpoint of the explanation. It means that students are able of activating same locally coherent sets of ideas again and again in time, independent of task contexts.

That study in 2006 was conducted under the cognitivist (representational mental model) framework that i abandoned in next years being fascinated of distributed cognition and ecological learning models.


This PhD study looks coherence and continuity in the context of embodied and distributed cognition. It uses coherence and continuity to address the sense-making practices by means of which relations of signification are established within and across contexts and situations. Coherence denotes the achievement of order, whether within or across a given problematic or situation. Continuity refers more explicitly to the achievement of coherence across settings and activities, which has been traditionally investigated as the question of transfer.

The coherence and continuity of any set of ideas or concepts, as made relevant by the participants during joint activity, cannot be analyzed in terms of a priori formal properties of either the material setting (e.g., texts, graphs, demonstrations) or the individuals’ thinking (e.g., a learner’s mental representations of texts, graphs, or demonstrations), but must be treated as the result of material and practical operations that involve both.

The thesis suggests that several studies (bodily episodic feelings, that is, a bodily and context-bound sense of “having-been-there” (p. 311), it is only as part of addressing and being addressed by others during conversation that the initial connection comes to be developed as a conceptual one – Nemirovsky, 2011; context-sensitive concept projections and the transfer-in- pieces framework– diSessa & Wagner, 2005; Wagner, 2010) refer to the an expansion of their conceptualizations of learning beyond the individual mental abstract representation to better account for the intrinsic relation between subjects and their immediate material and social environments. A concept projection is “a set of knowledge elements with which a knower assimilates and interprets … the situation’s affordances in a particular, meaningful way” (Wagner, 2010, p. 450).”

Some interesting findings from this PhD study:

  • an initial sense of similarity motivates action that transforms the situation, which in turn allows for the eventual achievement of a new conceptual way of accounting for a new existing order.
  • Inference, as a cognitive process, does not precede, but rather is the outcome of, a larger unit of activity. 
  • Individuals constitute and are constituted by the establishment of conceptual coherence because they are subject to the objective changes that bodily activity brings about in their attunement to the accountable, collective organization of activity
  • Any assumption about what particular actions, utterances, artifacts, and representations “mean” as cultural tools needs to be set aside and instead requires taking a first-time-through perspective of the participants


Reading this PhD study and my old research made me think of my other thoughts about the formation of cultural patterns as niches, that may be described using both of these concepts – coherence and the consistency.

I think coherence and consistency are important both in the circles of personal pattern formation and stabilisation, as well as cultural pattern stabilisation, since both are formed as niches from instances of experiencing. So coherence in pattern or meaning niches requires to be formed across different contexts. How do these instances of experiences align themselves into the coherent pattern or meaning that we can perceive? Is it the distributed nature of those different context experiences that some ways form a consistent network like in the connectionist models? On the other hand how from the contextual coherence point of view do individuals activate cultural patterns and align them with own experienced patterns?

In my old paper i refer: “Hammer et al. (2004) used the term “framing“ to explain the activation of a locally coherent set of epistemological resources, which in the moment at hand would be activated in a mutually consistent and reinforcing way. Framing presumes distributed encoding among resources rather than accepting the notion that knowledge is located in any particular cognitive resource. Distributed encoding is the distributed interpretation across a network of cognitive elements, while the frames can often shift easily.

The consistency of patterns and meanings suffers from time delay and the bubble effect. So from the ecological learning point of view it is personally rather not useful to create consistent cognitive patterns but keeping them open to chance events that can destabilise them from coherency. I wonder how many recommender systems focus of destabilisation processes rather than stabilisation ones.



systemic cognition and support in socio-technical systems

March 19, 2014

Explaining informal learning@work at managed clusters organized as TEL based socio-technical systems requires binding different level explanations: distributed cognitive level, personal – organizational level, cross-organizational network – cluster level.


Systemic (or distributed) cognition level

Benefits: Focusing on the systemic nature of distributed cognition (on the interplay between the epistemic distributed cognition from the agents’ side and the collective distributed cognition of organizational or professional community cultures) allows using the ecosystem principles for describing how learning services emerge and co-exist in this informal workplace learning ecosystem.

Distributed cognition makes use of vector-spaces for describing cognitive niches of individuals, cultural niches and meaning niches of resources.

Person- Organization level

Benefits: to open up the transformative knowledge conversion between individual and organizational knowledge (Nonaka & Takeuchi, 1995); particularly utilizing agents’ informal learning events for the benefit of organization and motivating self-directed learning at work with social and (cross-)organizational factors.

Problems: Implementing new learning cultures in organizations, moving from unintentional towards intentional informal learning practices in organizations

Cluster and cross-organizational network level

Benefits: increased responsiveness for the cluster and for its member organizations is achieved through temporal cross- and inter-organizational informal learning activities at work, and orchestrated bottom-up and top-to-down systemic management of shared knowledge and provision of services based on the knowledge base (see IntelLEO project results for responsiveness).

Problems: competitive edge between members, sharing restrictions for knowledge, the lack of mutual trust or over-conficence in one’s organization’s knowledge

Workplace learning ecosystems

Basically, the systemic cognition approach views socio-technical systems at workplace learning as learning ecosystems.

There is a variety of learning services at present (created by experts and in general by any learner), which are used by other informal learners and that accumulate and interact at organization’s and cluster’s knowledge-bases.

Agents: novices and experts:

Scaffolding in networks requires considering the differences of agents’ problem contexts, knowledge and expertise.

Self-directed agents create and make use of (request for, validate, share, modify etc.) workplace learning service exemplars when they solve problems or provide help.

Each learning service exemplar provided or utilized must be fit to the prototypical learning services niche of his kind. These niches are determined by many exemplars that agents activate. For example, request for help must contain sufficient information about the specific problem and help needed to attract those help-providers that have suitable expertise for tackling this problem, further, the help provided to meet this request must be useful, it should solve this problem as closely as possible.

Knowledge transfer is primarily inter-personal.

Organization: At socio-technical system level certain prototypical learning services are dynamically provided, depending on which learning services the agents activate:

  • increased awareness for, accepting and forwarding help-requests;
  • providing help adaptively in turn-taking actions that ground the problem;
  • fading out the help when competence increases;
  • indicating towards developing helpful resources (artifacts, objects, tools, persons in the network);
  • validating resources;
  • increasing persons’ expertise and trust level in respect of providing help for learning at work.

Each prototypical learning service is directed towards solving some workplace problem or conceptualizing some idea. These prototypes have contextual meaning niches that emerge and change dynamically as a result of many agents’ activation of the exemplars of that kind. These meaning-niches are like communicative signals offloaded to the socio-technical system. They serve as attraction basins indicating to agents, where organizational learning could be most effective.


  • creates incentives and manages motivation for promoting learning cultures at work;
  • explores and incorporates to organizational practices the usage of new learning@work activities;
  • removes the restrictions for cross-organizational knowledge transfer;
  • promotes open innovation cultures – open access to early prototypes,
  • design solutions or process-innovations with open source licenses;
  • promotes temporal alliances between members from different organizations to identify how to cope with challenges;
  • explore the opportunities or develop innovation.

Cluster management: maintains cluster’s organizational networks and knowledge base (ontologies, competences, norms and guidelines, access to human and virtual-real learning resources) and provides services based on this knowledge:

  • distributes information about challenges, practices and opportunities to learn;
  • identifies and nourishes new ideas that arise in the cluster organizations – such as organizing temporal cross-organizational knowledge-building activities for innovation;
  • provides, evolves and matures professional norms and guidelines;
  • initiates service-based value networks between member organizations;
  • detects proximities between cluster members;
  • promotes the learning culture at work that increases social motivation  – the more users are involved, the more likely it is that system becomes effective and is self-organizing;
  • controls organizational learning with incentives and motivation-management (policies for accreditation possibilities, and validation of workplace learning experiences).

Formal and informal cross-organizational networks are important to transfer knowledge.

The learning services the cluster can initiate depend on the abundance of certain learning service exemplars and of the learning service prototypes and niches at present in the socio-technical system.

Ecosystem principles applicable in learning ecosystems

The first principle in ecology is that the flow of energy and the exchange of matter through open ecosystem is regulated by the interactions of species (in our case types of learning services) and the abiotic component (by the web of energy and matter). Reyna conceptualized “teaching and learning” as this energy that empowers digital learning ecosystems to changing “information to knowledge”. The permeability of a digital learning ecosystem to the export and/or import of information and knowledge depend on the nature of the ‘architecture’ of the components of the system (e. g. connectivity, clustering), the characteristics of species, and their diversity and distribution, and interactions between them (such as commensalism).

The second important ecological principle is existence of the feedback loop to and from the environment that enables species to be adaptive to the environment and the environment to change as a result of species. A recent literature in evolutionary theory elaborates the notion of niche construction as an ecological factor that enables organisms to contribute for and benefit from environmental information. If organisms evolve in response to selection pressures modified by themselves and their ancestors, there is feedback in the system. In our approach to digital learning ecosystems, the “service-species” are activated by users with different roles (learner, facilitator) and their learning intentions. The niches for each service-species in the digital ecosystem may be collected from user-behavior, for example by learning analytics (an emerging approach to tracing digital footprints of learners and groups, visualizing the learning-related patterns).

Applications in social semantic systems: 

Niches are vector spaces – see paper From vector spaces to meanings

If we make use of the Connectionism approach to concept-processing (see the paper of Seitlinger et al, 2013) and extend this approach to epistemic and collective distributed cognition that happens in using mobile learning tools together with social semantic server, we may have an approach for socio-semantic recommendations that provide help based on the meaning niches that fit best to the requests (see the examples below).

In biology the figures for niche breadth figures are used, that may be useful in recommendation, also the idea of fitness landscape and attraction basins may be considers in recommendations.

The third important principle that we extend from ecology to technology-enhanced learning domain is associated with the communicative interactions between species. The digital community is a naturally occurring group of “service-species” populations in e-learning ecosystem who inhabit the same habitat (but use different niches) and form temporary coalitions (communities). For example the mutualisms such as parasitism, symbiosis or commensalism may appear between service species are associated with sharing the resources and associate with our first principle (energy and matter exchanges in the network). Other type of interactions, based on communication, which assumes mutual awareness, signaling between agents (or using the accumulated signals left into the environment) may be distinguished as well.

Application cases of informal learning at work

Below, there are three informal learning and supporting behaviours that may potentially appear in socio-technical systems.


To introduce new knowledge to the newcomers the experts make use of their earlier experiences, they also utilize and evolve resources for providing help, as well as the archetypical scaffolding models in their profession, on the other hand, the help-provision increases the trust level of experts in respect of solving certain problems.ACCUMULATING EXPERTISE


Recommending – relating systemic cognition and connectionist approaches

Some issues of recommending when using the systemic (distributed) cognition approach:recommending

Seitlinger. et al., (2013). Recommending Tags with a Model of Human Categorization

Seitlinger et al.(2013) use in their recommendation model Connectionist model of cognitive processing:

Kruschke 1992 alcove model

First layer can have distributed activation. The model is initialized with equal attention strengths to all dimensions, but as the training proceeds, the model learns to allocate more attention to relevant dimensions and less to irrelevant dimensions.

Internal layer functions as agent’s cognitive niche that incorporates cultural niche for weighting. Internal layer gives weights to the nodes, each hidden node corresponds to a position in the multidimensional space. A state of activation (a) at a given time (t): The state of a set of units is usually represented by a vector of real numbers a(t). These may be binary or continuous numbers, bounded or unbounded. A frequent assumption is that the activation level of simple processing units will vary continuously between the values 0 and 1.

In biology, Hutchinson (1957) defined niche as a region (n-dimensional hypervolume) in a multi-dimensional space of environmental factors that affect the welfare of a species (in our case prototypes). Niches have been conceptualized as the collections of environmental gradients with certain ecological amplitude, where the ecological optimum marks the gradient peaks where the organisms (in our case exemplars) are most abundant.

The welfare of species can be determined by meaning-creation and action-taking possibilities in the environment.

In the gradient concept structural ecosystem properties are comprehended as concentration gradients in space and time (Müller, 1998). Any niche gradient is a peak of the fitness landscape of one environmental characteristic (Wright, 1931), which can be visualized in two-dimensional space as a graph with certain skew and width, determining the ecological amplitude. The shape of the fitness graph for certain characteristic can be plotted through the abundance of certain specimen (exemplar in our case) benefitting of this characteristic. All niche gradients are situated and establish a multi-dimensional hyper-room, which axes are different environmental parameters.

This connectionist theory problem was also explained by T. Ley in Innsbruck meeting.

Also see article From vector spaces to meanings


thesis: Learning and knowledge building practices for teachers’ professional development in an extended professional community

July 7, 2013

Kairit Tammets, my first doctoral student will defend her thesis at 21st of August.

Now her dissertation is available from here

Tammets, Kairit (2013) Learning and knowledge building practices for teachers’ professional development in an extended professional community.

The purpose of her PhD research project is to investigate the process of the learning and knowledge building (LKB) in the extended professional community that is supported with the socio-technical system.

Spatial narratives in new media ecosystems

November 13, 2012

Two years ago i held a speech on Spatial narratives in Media Mutations conference in Bolognia. Now they will publish a book in italian, and i have rewritten my conference speech with The Shadow of The Wind example, which will appear in the book in italian. Here is the english version of the paper:


thinking of the nature of ecology of mind

May 2, 2012

I have started some collaboration with Emanuele Bardone on defining ecology of mind.

Here are some initial thoughts and examples how to see ecology of mind in spatial terms.

There are some approaches that support cultural inheritance, ecological inheritance mechanisms, such as:

  • engineering web
Nontrophic and indirect interactions between species—that is, by the engineering web (Jones et al. 1994).
Jones, C. G., Lawton, G. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.
Jones, C. G., Lawton, G. H., & Shachak, M. (1997). Ecosystem engineering by organisms: Why semantics
matters. Trends in Ecology & Evolution, 12, 275.
  • external memory field
External memory field is essentially a cognitive workspace external to biological memory (p.296-297)
The external memory field is a temporary arrangement of some of the material in external symbolic storage system, for the use of one person (p.306)
Individuals connected to cultural network can access and exterior memory bank, read its codes and contents, store new contributions in permanent form, and interact with other individuals who employ the same codes and access routes (p. 311-312).
Human minds float freely, without any apparent physical tie-in, either temporary or permanent, to cultural devices (p.312).
The brain may not have changed recently in its genetic makeup, but its link to an accumulating external memory networks affords it cognitive powers that would not have been possible in isolation. (p.312)
Each time when brain carries out an operation in concert with the external symbolic storage system, it becomes part of the network. Its memory structure is temporarily altered, and the locus of cognitive control changes. (p. 312)
we are permanently wedded to our great invention (…external memory…) in a cognitive symbiosis unique in nature (p.356)
…within the context of hybrid mental architecture...consciousness can take many forms..(p.368)
…in case of television, the viewer yealds control to the external system, the screen becoming the external memory field (p. 372)
Merlin Donald (1991). Origins of the Modern Mind.
  • cultural and ecological inheritance
Natural selection and cultural selection are both involved when the animal population is human.
NCT (niche construction theory) is sometimes referred to as “triple-inheritance theory” (genetic, cultural, and ecological inheritance; e.g., Odling-Smee et al. 1996, 2003; Laland et al. 1999, 2000, 2001; Day et al. 2003; Shennan 2006).
The niche-construction perspective stresses two legacies that organisms inherit from their ancestors, genes and a modified environment with its associated selection pressures. Genetic inheritance depends on the capacity of reproducing parent organisms to pass on replicas of their genes to their offspring. Ecological inheritance, however, does not depend on the presence of any environmental replicators, but merely on the persistence, between generations, of whatever physical changes are caused by ancestral organisms in the local selective environments of their descendants (Odling-Smee et al., 2003).

Odling-Smee, F.J., Laland, K.N., & Feldman, M.W. (2003). Niche Construction: The Neglected Process in Evolution. Monographs in Population Biology, 37, Princeton University Press.

  • ecological knowledge
Heft (2001) wrote that: “we engage a meaningful environment of affordances and refashion some aspects of them… These latter constructed embodiments of what is known – which include tools, artifacts, representations, social patterns of actions, and institutions – can be called ecological knowledge. Ecological knowledge through its various structural, material culture, human setting manifestations becomes an integral social and cultural part of ‘the environment’, with these social and cultural affordances constituting effective, largely material, forms of knowledge with their own functional significance, cultural transmission, and adaptation implications.”
Heft, H. (2001). Ecological psychology in context. : James Gibson, Roger Baker, and the legacy of William James’s radical empiricism. Lawrence Erlbaum Associates, Publishers.
It also associates with the cultural interface  concept (Manovich, 2008).
  • cultural interface
Lev Manovich in Software takes control (2008), uses cultural interface concept to describe human-computer culture
The interface is habitually the crucial boundary, or zone of articulation and translation whenever a computer would communicate with technological devices or the human user
“Cultural interfaces”, not just the diverse software interfaces of new media but also the formal traits and user practices with the printed word and cinema, can migrate into, and become part of, the interfaces of new media.
“While operations [like selection] are embedded in software, they are not tied to it. They are employed no only within the computer but also in the social world outside it. They are not only ways of working within the computer but also in the social world outside it. They are… general ways of working, ways of thinking, ways of existing the computer age.”
  • distributed cognitive system
I had to analyze our IntelLEO project results (cross-organizational leaning and knowledge-building supported by technological services), and as we have considered that it may be seen as a distributed cognitive system.

Then i was thinking of the ways how locus of cognitive control was partially external:

– the system services support
– the offloaded contents (of the person, of other persons, from organizations/cultures), meta-structures of content that reveal big picture or crowd knowledge (aggregations such as tags, tagclouds, ontologies) or meta-level increased access to certain contents (mashups, networks)
– the social support (such as awareness, social(participatory) surveillance, peer-scaffolding by commenting, rating)
These associate with the three ecological principles as well.

support web concept for teacher’s learning environment

May 2, 2012

Recently i was supervising the master thesis of Kristi Laanemäe. She conducted the formative analysis (interviews with art teachers who had used the support-web) to develop and validate and improve the support web concept with social media for art education set “Ready! Set! Art!” website.

The goal of RSA support web is to:

  • make RSA art educational materials dynamic and constantly improved
  • give additional value to RSA art educational materials
  • use as few resources (money and time) as possible to update and develop RSA support web
  • distribute and advertise RSA art learning environment and NGO ideas and image
  • bring art education up to date.

Improved support web:

  • accumulates access to all the different parts of support web
  • collects and accumulates artifacts automatically
  • gathers produsers
  • distributes automatically or enables to manually distribute artifacts (student works, feedback and additional materials)
  • enables web based communication
  • guarantees user-to-user feedback and organized feedback (user-to-NGO communication through feedback form)
  • provides extra value to RSA art educational materials
  • distributes and advertises RSA learning environment automatically
  • allows to manage or sort content by users needs
  • allows combined and interactive learning
  • has dynamical adaptiveness and easily perceivable structure that applies to user needs
  • motivates produsers automatically and manually.

I particularly like the figure that Kristi developed for support web concept.

Support web conceptual model developed by Kristi Laanemäe (2012) for support web of teachers' educational materials in Art.