Archive for the ‘distributed cognition’ Category


Coherence and consistency in ecological learning

December 22, 2015

I have found an interesting PhD thesis by Jornet, Alfredo(2014)

that reminded me my ideas of conceptual coherence and consistency in one paper that never was published. There in 2006  i wrote about conceptual coherence the following:

The definitions of conceptual coherence often combine the cohesiveness and consistency properties of conceptual knowledge. Coherence is a definition that is applicable for characterizing the states of the elements of some larger units (eg. phenomenological primitives, epistemological resources). Coherence is also related to the contextual and time-related dimensions. Cohesiveness is the property characterizing the conservation of inherent relationships among ideas in one explanation framework or the links among several related conceptual frameworks. Consistency is defined as a property indicating that students’ explanations of a certain phenomenon are stable, independently of the variable contexts that depend on the viewpoint of the explanation. It means that students are able of activating same locally coherent sets of ideas again and again in time, independent of task contexts.

That study in 2006 was conducted under the cognitivist (representational mental model) framework that i abandoned in next years being fascinated of distributed cognition and ecological learning models.


This PhD study looks coherence and continuity in the context of embodied and distributed cognition. It uses coherence and continuity to address the sense-making practices by means of which relations of signification are established within and across contexts and situations. Coherence denotes the achievement of order, whether within or across a given problematic or situation. Continuity refers more explicitly to the achievement of coherence across settings and activities, which has been traditionally investigated as the question of transfer.

The coherence and continuity of any set of ideas or concepts, as made relevant by the participants during joint activity, cannot be analyzed in terms of a priori formal properties of either the material setting (e.g., texts, graphs, demonstrations) or the individuals’ thinking (e.g., a learner’s mental representations of texts, graphs, or demonstrations), but must be treated as the result of material and practical operations that involve both.

The thesis suggests that several studies (bodily episodic feelings, that is, a bodily and context-bound sense of “having-been-there” (p. 311), it is only as part of addressing and being addressed by others during conversation that the initial connection comes to be developed as a conceptual one – Nemirovsky, 2011; context-sensitive concept projections and the transfer-in- pieces framework– diSessa & Wagner, 2005; Wagner, 2010) refer to the an expansion of their conceptualizations of learning beyond the individual mental abstract representation to better account for the intrinsic relation between subjects and their immediate material and social environments. A concept projection is “a set of knowledge elements with which a knower assimilates and interprets … the situation’s affordances in a particular, meaningful way” (Wagner, 2010, p. 450).”

Some interesting findings from this PhD study:

  • an initial sense of similarity motivates action that transforms the situation, which in turn allows for the eventual achievement of a new conceptual way of accounting for a new existing order.
  • Inference, as a cognitive process, does not precede, but rather is the outcome of, a larger unit of activity. 
  • Individuals constitute and are constituted by the establishment of conceptual coherence because they are subject to the objective changes that bodily activity brings about in their attunement to the accountable, collective organization of activity
  • Any assumption about what particular actions, utterances, artifacts, and representations “mean” as cultural tools needs to be set aside and instead requires taking a first-time-through perspective of the participants


Reading this PhD study and my old research made me think of my other thoughts about the formation of cultural patterns as niches, that may be described using both of these concepts – coherence and the consistency.

I think coherence and consistency are important both in the circles of personal pattern formation and stabilisation, as well as cultural pattern stabilisation, since both are formed as niches from instances of experiencing. So coherence in pattern or meaning niches requires to be formed across different contexts. How do these instances of experiences align themselves into the coherent pattern or meaning that we can perceive? Is it the distributed nature of those different context experiences that some ways form a consistent network like in the connectionist models? On the other hand how from the contextual coherence point of view do individuals activate cultural patterns and align them with own experienced patterns?

In my old paper i refer: “Hammer et al. (2004) used the term “framing“ to explain the activation of a locally coherent set of epistemological resources, which in the moment at hand would be activated in a mutually consistent and reinforcing way. Framing presumes distributed encoding among resources rather than accepting the notion that knowledge is located in any particular cognitive resource. Distributed encoding is the distributed interpretation across a network of cognitive elements, while the frames can often shift easily.

The consistency of patterns and meanings suffers from time delay and the bubble effect. So from the ecological learning point of view it is personally rather not useful to create consistent cognitive patterns but keeping them open to chance events that can destabilise them from coherency. I wonder how many recommender systems focus of destabilisation processes rather than stabilisation ones.



Social positioning in hybrid social learning networks (HSLN)

October 23, 2015

Our paper of social recognition provision practices in professional help seeking forums led us towards thinking how to improve the knowledge building within such socio-technical systems.

John Cook has suggested in the Learning Layers project a concept of Hybrid Social Learning Networks (HSLN). “Hybrid Social Learning Networks (HSLNs) is a concept describing socio-technical systems that enable Zones of Possibility (ZoP) to emerge when people and artifacts interact and engage in social positioning practices while learning in informal workplace learning situations. In a Zone of Possibility people connect and interact through a hybrid network of physical and technology-mediated encounters to co-construct knowledge and effectively engage in positioning practices necessary for their work.  ”

“Cook: The Zone of Possibility definition thus makes a distinction between the Zone as the structure (a hybrid network of physical and technology-mediated encounters blending socio-technical systems and the actual practice), and the behaviours that the Zone allows (calls for) (connect and interact, to co-construct knowledge, calls for orchestrating social supports – navigation and bridging aids, social positioning, positioning practices necessary for their work), and the resulting functions that the Zone takes as the Possibility (that learners can benefit from the ideas of others). ”

In HSLN-s the different problems and issues can be discussed in specific targeted work groups, that may allow knowledge to be maturing through knowledge building practices. These working groups embedded to wider HSLN can be considered working as in the Zone of Possibility for workplace learning.

Part of what happens in working group relates with dynamic social positioning and identity creation.

I have modelled  how the HSLN and the working group may be interrelated.


Figure: social positioning and identity in the knowledge building workgroups of HSLN.

I used the communication acts’ model we presented earlier, to indicate in timeline how the group who is embedded in HSLN may be influenced by these communication acts during the cycles of knowledge maturing.

The initial group that works for problem sends out requests for, and receives recommendations that are based on socio-technically aided validations that contribute to accumulating credibility to people and resources. Knowledege maturing in the group as well as the social positioning in the group is advancing due to these added resources and persons, and the collaborative knowledge-building the group does. The accumulated credibility from the HSLN contributes to social positioning in group as follows: it may give expertise based ranking among the group members to certain people in group depending of a certain time moment, so social position may change dynamically due what happens with involved persons – which resources they bring into the group (credibility of resources enables calculating persons topic related credibility), what is their personal credibility based on these resources, plus what is their overall credibility in HSLN). Additionally, within the group the adequacy of credible resources and credible persons in respect to topic in hand is estimated as a whole, and if group expertise is low, the recommendations could be pushed by HSLN to add relevant credible persons and resources.

Social ranking of persons within group in time moment may suggests identity and roles in teams, such as leader expert (responsible for summarizing, setting rules to how document is created), and experts who provide arguments (responsible for introducing alternatives, validating).


Distributed cognition model at workplace learning situations

September 2, 2015

Finally some parts of the empirical data from Learning Layers project have been mapped back to the distributed cognition model.

This work relates cultural pattern appropriation in learning .


This figure describes how patterns “Problem solutions”, “Standards” or “Guidelines” may be updated and what is the role of scaffolding and knowledge maturing practice elements in workplace problem-solving and learning process.

The explanation of the model (draft so far):

Formation and stabilization of “Problem Solutions” or “New guidelines” or “Standards and normatives” as patterns:

1) The individuals, groups and collectives may initiate the Request for help on the basis of Dissonance between own knowledge and that knowledge that supposedly collectively possessed, or what the group might co-create collaboratively. The triggers for Requests for help are urgent problems, mismatch between existing guidelines/normatives/standards and the problem situations, or missing guidelines/standards/normatives for novel problem situations.  The Request for help present to the selected expert, group of workmates or the collective (network, special group) either the “Problem and some possible solutions (with evidences)”; the “Guideline/Standard/Normative (with new non-corresponding evidences)”; or the “Actual work process with a novel project (with the access to monitor/participate in it)” .

2) The targeted helpers are selected based on proximity and trust. When the Request for help is directed towards individual experts, selected expert groups with different expertise, or groups with relatively equal and incomplete expertise, the specific short-term or long-term workforces are created. In case of sending help requests to the collectives representing self-organised members (e.g. special groups, networks), the individuals in the collective may be sufficiently alert having Awareness of upcoming Requests for help – they have collectively taken responsibility for providing help when relevant. Helping practice in collective level is most often an informal activity, while helping practice in collaborative level by experts and groups may be formally embedded to the actual working practices.

3) The individuals in the collective use Negotiation/Grounding for specifying the problem-solution/guideline/standard/normative. The end of Negotiating/Grounding is establishing the common ground. This common ground about problem-solution is often not Formalised/Standardized and shared with the collective, thus it will not be accessible to others for future Uptake. When the individuals of the group Re-experience the problem-solution they continue generating new variations and the pattern is not easily formed. The common ground established for updating or developing new guideline/standard/normative is usually Formalised/ Standardized, shared at collective level, and becomes accessible for further Uptake/Re-experiencing what can amplify the pattern formation.

4) The individuals involved in helping usually Contextualise the problem/ guideline/standard/normative into their locations or situations enabling the variety of alternatives to be discovered in short time. The de-contextualization to generalize solution/guideline/standard/normative is supported in work-groups who discuss or can practice something together by Co-constructing the shared documents that mediate the Formalization/Standardization and are more useful for later pattern sharing at the collective level.

5) Different forms of Validation are used in the Negotiation/Grounding process. The individuals or groups share examples of problem-solution/guidelines/normatives/standards, Validating those with evidences (photos, schemas), personal expertise gained in practice, guidelines/normatives/standards and real examples of practicing to try something out.

The members of the groups and collectives also gain Social Recognition that validates them as experts.

6) The Formalization/Standardization of solutions/guidelines/standards/normatives happens mostly at the collaborative level Co-Creation activities. The collective groups (such as special groups in What’s App) or groups formed at workplace for solving urgent problems do not Formalize/Standardize the solutions/guidelines/standards/normatives that hinders pattern amplification through Uptake/Re-Experiencing, but leaves room for different alternative variations to be used.

7) Persons, groups and collectives may recommend personally or collectively Validated and/or Formalized/Standardized problem-solutions/guidelines/standards/normatives as patterns to resolve help requests [alternatively the Recommender systems may select based on the Request for help from the existing solutions in the collective knowledge base the most relevant “Problem Solutions” or Experts and recommend those]

Change of “New Problem solutions”, “New guidelines” or “New Standards and normatives” as patterns:

1) The practitioners at work belong to the formal/informal groups and collectives (e.g. networks or special interest groups), share common knowledge and practices, and have Awareness of mutually interesting problem-solutions/guidelines/standards/normatives. This Awareness may be mediated by some technologies such as forums (WhatsApp) and databases to discover guidelines/normatives/standards.

2) The practitioners (both individuals and representatives of groups and collectives) perceive at work situations Dissonance between the solutions/guidelines/standards/normatives they know and have experienced, and the potentially existing patterns (solutions/guidelines/standards/normatives) in their formal/informal groups and collectives. They also may discover the mismatch in solutions/guidelines/standards/normatives and actual needs.

3) They involve other experts through Requesting for help from individuals, groups and collectives to Co-create new solutions/guidelines/standards/normatives or will develop by the new solution or practice themselves. Alternatively they Create/Construct novel solutions, and Re-experience to test them out.

They share the New Solution Validating it with evidences with the groups or collectives, and Request for Validation.

4) The addressed expert, group or collective is Negotiating/Grounding with the proposer to specify the New Solution or Practice.

5) As part of Negotiating/Grounding the expert, group or collective is Validating the New Solution by comparing it with existing solutions/guidelines/standards/normatives as well as with expertise, personal experiences, similar cases or with the commonly accepted collective practice. They also aim at achieving common ground about the Formalization/Standardization of it. As a result they may decide the New Solution or Practice to be significantly different and useful and yet missing; or find it being the instance of some existing solution/guideline/standard/normative.

Possible Validation in action may take place to develop the new solution/guideline/standard/normative, that incorporates Contextualization of New Problem Solution to be tried out in at different situations or de-contextualization in a specific case in which the members use the mediating shared document to Formalize/Standardize the New Problem Solution. The Formalization/Standardization makes it shareable and other practitioners can Uptake/Re-experience it that amplifies the new pattern in the community of professionals.

Application of “Problem Solutions”, “New guidelines” or “Standards and normatives” as Patterns

1) At some point the individuals/groups or collectives Re-contextualise the provided solutions and applies guidelines/standards/normatives to solve the problem in hand; they may Re-Experience the solutions/guidelines/standards/normatives several times until Uptake happens and it becomes frequently/commonly used. That will strengthen the pattern.


A model for cultural pattern appropriation in learning

June 12, 2015

Recently we have worked with my colleague Tobias Ley, on the figure to describe how distributed cognition and pattern-formation associate with individual, collaborative and collective learning – A model for cultural pattern appropriation in learning.

Earlier we have described a model of pattern-appropriation and relations between epistemic and collective distributed cognition with Emanuele Bardone ( Pata & Bardone 2014).


Figure. Collective and epistemic distributed cognition ( in Pata & Bardone, 2014)

Then we took a step forward and validated this model together with Tobias Ley and Paul Seitlinger using the tagging data (Ley, Seitlinger, Pata, in press).

We found that:

– individual stabilization co-occurs with processes of enculturation

– artifact-mediated activity lead to formation and stabilization of individual patterns

collective stabilization is a result of individual pattern formation and artifact-mediated social feedback.


Figure. Coupling in pattern formation between Collective and Epistemic Distributed Cognition. ( in Ley, Seitlinger, Pata, in press)

In the third step we started to look how these phenomena happen in workplace learning situations. In the Learning Layers project several interviews with workers in construction and healthcare context, and the related sectorial networks have been conducted. We wanted to use these data to describe the workplace learning patterns. Analytically we first identified existing patterns ( as some practices), and then tried formalising these pattern names. This lead us understanding that central patterns relate solving workplace problems, which brings along knowledge maturing and requires scaffolding learning at individual, collaborative and collective level.

We assume that scaffolding learning and the knowledge maturing are two processes of how the individual, collective and collaborative learning systems influence each other through pattern formation and -appropriation.

As patterns we consider individually, collaboratively or collectively created repeated solutions to the problems that may appear in different contexts. Taking the distributed cognition stance we may see knowledge as a set of pattern activations.

Our model for distributed cognition, scaffolded learning and knowledge maturing (version 1):

Copy of Learning Across Levels of Analysis

Figure A model for cultural pattern appropriation in learning (ver. 1 developed by Ley & Pata, 2015)

Scaffolding (Vygotsky 1978; Wood et al. 1976) in this model is a process where appropriate guidance structures (scaffolds) are created to enhance individual, collaborative or collectives learning in a fading out manner as the individual, group or collective becomes able in solving certain problems. The neo-Vygotskian perspective in social constructivism assumes that the culture (the collective learning) gives for the individual and for the collaborative learning the cognitive tools needed for development. Vygotsky (1994) saw the environment as the source of person‘s development and not its setting. Vygotsky’s (1978) socio-cultural theory emphasizes social interaction and the relationships between individuals and assumes that cognitive development, including higher-order learning, is rooted in social interactions and mediated by abstract symbols. These are not created in isolation but rather are products of the socio-cultural evolution of an actively involved individual. Scaffolding in distributed cognition framework is supporting epistemic and collaborative distributed cognition, the coordinated functioning of the learner(s)’ cognitive, metacognitive and affective domains embraced by collaboratively and collectively emerging patterns (see Ley, Seitlinger, Pata, in press).


The learning of individuals can be scaffolded (Wood, Bruner, and Ross, 1976) in the zone of proximal development (Vygotski, 1978), that initially was defined as the unidirectional difference between what a learner can do without help and what he or she can do with help of knowledgeable other. In later studies the ZPD concept has been extended to several phenomena. ZPD is considered bidirectional in collaborative situations (Forman, 1989; Goos et al., 2002) and is the the learning potential in small groups where learners have incomplete but relatively equal expertise and where each partner who possesses some knowledge and skills requires the others’ contribution in order to make progress. Through the usage and development of personal and collective patterns in individual learning situations Ley, et al. (in press) and in collaborative situations (Rasmussen, 2001) the ZDP may appear between individual epistemic distributed cognition and the collaborative or collective distributed cognition. According to Valsiner (1987), the culture sets constraints through zone of promoted actions (ZPA) (such as collaborative or collective patterns), and the context of action and actual environment may constrain it even further through zone of free movement (ZFM). Scaffolding in a self-organized systems (socio-technical systems) is no more restricted to human expert and learner (Puntambekar & Hubscher, 2005), but the accumulated knowledge and human behaviours in socio-technical system can be used as scaffolds (Lytras & Pouloudi, 2006; Tammets et al., (2014) and individuals, groups and  organizations must adapt themselves to the current dynamic state of the system. In socio-technical systems scaffolds appear as self-organized services created in synergy of social behaviours and technical means ( e.g. meaning making by social tagging). Socio-technical scaffolds are by nature meta-designed patterns that evolve through feedback loops involving the users in providing support elements to their problems (see Fisher et al., 2007).

In our model scaffolding process supports the knowledge maturing and learning processes that happen in parallel. Scaffolding process involves the following elements:

1) agents that receive and agents that provide scaffolding (individuals, groups, networks, organizations/collectives, socio-technical systems)

2) actions how scaffolding is requested for and put in action (noticing dissonance/mistakes, request for scaffolding; awareness; negotiation/grounding; (re)contextualization; validation/recognition;  uptake/re-experience)

3) scaffolding knowledge and how this is created  (scaffolding knowledge also is developed through the maturing cycle)

4) the problem and the associated knowledge patterns (a pattern is a personally or collaboratively or collectively validated solution to the problem)

5) the stages and relations of scaffolding agents and the problem that have to be detected to make scaffolding actions  applying scaffolding knowledge) effective (such as comprehension of agent’s goals in respect to problem

The scaffolding process can be described as follows:

The agent(s) (person, group, collective) that solve the problem have awareness of expected state of knowledge (the awareness of collaborative or cultural patterns) but notice the dissonance between their actual state of problem solving and the expected state (that is ZPD in the ZPA and ZFM). Agent)s) request for scaffolding and the agent(s) that scaffold (person, group, collective, socio-technical system) must be aware of such scaffolding requests. Then follows the process to discover the agent’s state in respect to problem (and related patterns) and scaffolding knowledge (and related patterns). This process requires agents to (re)contextualize the problem. Noticing the dissonance/detecting the mistakes between the scaffolded agents‘ and scaffolding agents‘ choice of patterns for solving the problem leads them to negotiate/ground for common understanding. This bases on the discourse act model (see in Traum and Allen, 1994, Clark and Schaefer 1989; Pata, 2005).


This (re)contextualization and negotiation/grounding process is done in the fading out manner, that requires the agent that scaffolds to have the dynamic awareness of the changing state of scaffolded agent’s patterns to solve the problem. (Re)contextualization and grounding also may require the remediation of the problem. Validation/recognition is part of the negotiation/grounding acts, it uses the individual, collaborative and cultural patterns to to provide recognition to the current problem solving event and moderates/finalizes grounding acts until the final solution is achieved. In the end of scaffolding process the agent that requested for scaffolding is able to uptake the practice, has the ownership of certain collaborative or collective pattern and no more scaffolding for solving this type of the problem is needed.

Knowledge maturing can be understood as a process where knowledge patterns from the individual level are taken up in the collaborative or collective ways through embodied cognitive processes to create collaborative or collective patterns that in turn influence individual, collaborative and collective learning ( Ley et al, in press). Maturing can be explained by trialogical learning (Hakkarainen and Paavola, 2009; Paavola and Hakkarainen, 2014) that describes the systemic (with feedback loop) nature of the knowledge maturing. Trialogical learning paradigm (Hakkarainen and Paavola, 2009; Paavola and Hakkarainen, 2014) takes the distributed cognitive stance and contextualizes the usage of digital tools and -artifacts in the organizational knowledge creation processes. Activities in organizations always contain various artifacts (e.g. instruments, procedures, methods, laws, forms of work organization etc.). Main core of trialogical learning approach is organizing work around shared knowledge artifacts as mediators of human thought and behaviour (Nardi, 1996) – the emergent interactional resources (Stahl, 2012), which can mediate between individual learning, group cognition and organizational knowledge building, will structure the shared work and reflective practices, may be versioned and iteratively transformed during long term knowledge creation, leading to forming organizational knowledge and practices. By capitalizing on distributed cognition (Hutchins, 1995), the trialogical approach examines knowledge artifacts as materially embodied entities that are worked on in various “external memory fields” (Donald 1991) and “activity systems” (Engeström, 1999) rather than reduced to their conceptual content only (Paavola and Hakkarainen, 2009). In order to transform knowledge artifacts as instruments of their activity, participants have to go through a developmental process of “instrument genesis” (Ritella and Hakkarainen 2012). Passing the knowledge artifacts from one technology to another and one social formation level (individual, group, collective) to another requires its remediation as a central practice (Paavola & Hakkarainen, 2014), and allows improving new properties in that knowledge. Remediation in maturing process is done by changing the format of knowledge from implicit to explicit, from practiced behaviours to verbally/visually communicated and written documents. In this remediation process knowledge is taken from individual to socially shared and collectively approved formats, it is formalized and standardized using governance mechanisms. Governance structures are also responsible for knowledge circulation in a systemic manner, enabling the access to matured knowledge (vocabularies, norms, guidelines etc.).

According to Schmidt and Kunzmann (2014), the knowledge maturing process actions can be divided between different agent levels in our model.

Individual learning phase

The   initial   phases  of maturing  (I.   Emergence)  are   characterized   by   the  exploration
(Ia)  of  new  spaces,  either  as  activities  of  analyzing existing  material  or  by  creative  processes  (new  ideas).  In  both  cases, knowledge is deeply subjective, and the individual decides through appropriation (Ib)   where   or   not   to   pursue   further
development of the usually abundant items in phase Ia. From the distributed cognition approach to learning (Ley et al., in press), appropriation contains individuals to appropriate collaborative or collective patterns, that can be supported by scaffolding processes.

Collaborative learning phase

In the next phase (II. distribution in communities), where knowledge gets discussed and negotiated between different individuals of a social group. This includes the development of a

shared vocabulary and associated understanding, and usually many individual contributions get amalgamated. To reach beyond the social group, transformation (III) is required where the focus is on creating artefacts by restructuring and agreeing on. Transformation means that knowledge is restructured and decontextualized to ease the transfer to collectives other than the originating community. Providing shared vocabulary is governance element as well.

Collective learning phase

For further outreach, the introduction phase (IV) provides an initial step in which either knowledge is prepared in a way that it is easier to understand for others as part of workshops or trainings (instructional strand) or put to practice in a pilot (such as process knowledge). Both is experimental and is a learning phase where experiences are incorporated that prepare for a wider roll-out in the institutionalization phase (Va) where the knowledge gets a stable place, either as part of formal training plans, or as company-wide implementations (processes, products or similar). The goal is here to gain efficiency. Both when knowledge is formalized to be understandable for all, and institutionalized are the elements of governance.

Finally, moving beyond the limited scope of companies, phase Vb (External standardization)

moves towards standardisation or certification where comparability and compliance play a primary role.

Knowledge maturing incorporates several components:

1) agents that create and use knowledge (individuals, groups, networks, organizations/collectives, socio-technical systems)

2) actions how knowledge maturing is initiated and managed (

exploration, appropriation, noticing dissonance/mistakes (that is important at individual, group and collective level and triggers maturing), request for maturing;  awareness (awareness is needed in the distributed cognitive framework to be aware of collaborative collective patterns and awareness allows appropriation) ; negotiation/grounding and (re)contextualization; validation/recognition;  formalization, standardization, uptake/re-experience)

3) knowledge, how it is represented and its maturity states (incorporating knowledge patterns – personally or collaboratively or collectively validated solutions to the problem)

4) the problem and the associated knowledge patterns

It is particularly interesting that according to our approach scaffolding adds to trialogical learning design (Paavola & Hakkarainen, 2009; 2014) this mediation component that allows cultural pattern appropriation in learning.

In the next phase we try to validate our model with the workplace learning data. Then we can be more certain, also can we use same action names for scaffolding and knowledge maturing processes in workplace learning.


systemic cognition and support in socio-technical systems

March 19, 2014

Explaining informal learning@work at managed clusters organized as TEL based socio-technical systems requires binding different level explanations: distributed cognitive level, personal – organizational level, cross-organizational network – cluster level.


Systemic (or distributed) cognition level

Benefits: Focusing on the systemic nature of distributed cognition (on the interplay between the epistemic distributed cognition from the agents’ side and the collective distributed cognition of organizational or professional community cultures) allows using the ecosystem principles for describing how learning services emerge and co-exist in this informal workplace learning ecosystem.

Distributed cognition makes use of vector-spaces for describing cognitive niches of individuals, cultural niches and meaning niches of resources.

Person- Organization level

Benefits: to open up the transformative knowledge conversion between individual and organizational knowledge (Nonaka & Takeuchi, 1995); particularly utilizing agents’ informal learning events for the benefit of organization and motivating self-directed learning at work with social and (cross-)organizational factors.

Problems: Implementing new learning cultures in organizations, moving from unintentional towards intentional informal learning practices in organizations

Cluster and cross-organizational network level

Benefits: increased responsiveness for the cluster and for its member organizations is achieved through temporal cross- and inter-organizational informal learning activities at work, and orchestrated bottom-up and top-to-down systemic management of shared knowledge and provision of services based on the knowledge base (see IntelLEO project results for responsiveness).

Problems: competitive edge between members, sharing restrictions for knowledge, the lack of mutual trust or over-conficence in one’s organization’s knowledge

Workplace learning ecosystems

Basically, the systemic cognition approach views socio-technical systems at workplace learning as learning ecosystems.

There is a variety of learning services at present (created by experts and in general by any learner), which are used by other informal learners and that accumulate and interact at organization’s and cluster’s knowledge-bases.

Agents: novices and experts:

Scaffolding in networks requires considering the differences of agents’ problem contexts, knowledge and expertise.

Self-directed agents create and make use of (request for, validate, share, modify etc.) workplace learning service exemplars when they solve problems or provide help.

Each learning service exemplar provided or utilized must be fit to the prototypical learning services niche of his kind. These niches are determined by many exemplars that agents activate. For example, request for help must contain sufficient information about the specific problem and help needed to attract those help-providers that have suitable expertise for tackling this problem, further, the help provided to meet this request must be useful, it should solve this problem as closely as possible.

Knowledge transfer is primarily inter-personal.

Organization: At socio-technical system level certain prototypical learning services are dynamically provided, depending on which learning services the agents activate:

  • increased awareness for, accepting and forwarding help-requests;
  • providing help adaptively in turn-taking actions that ground the problem;
  • fading out the help when competence increases;
  • indicating towards developing helpful resources (artifacts, objects, tools, persons in the network);
  • validating resources;
  • increasing persons’ expertise and trust level in respect of providing help for learning at work.

Each prototypical learning service is directed towards solving some workplace problem or conceptualizing some idea. These prototypes have contextual meaning niches that emerge and change dynamically as a result of many agents’ activation of the exemplars of that kind. These meaning-niches are like communicative signals offloaded to the socio-technical system. They serve as attraction basins indicating to agents, where organizational learning could be most effective.


  • creates incentives and manages motivation for promoting learning cultures at work;
  • explores and incorporates to organizational practices the usage of new learning@work activities;
  • removes the restrictions for cross-organizational knowledge transfer;
  • promotes open innovation cultures – open access to early prototypes,
  • design solutions or process-innovations with open source licenses;
  • promotes temporal alliances between members from different organizations to identify how to cope with challenges;
  • explore the opportunities or develop innovation.

Cluster management: maintains cluster’s organizational networks and knowledge base (ontologies, competences, norms and guidelines, access to human and virtual-real learning resources) and provides services based on this knowledge:

  • distributes information about challenges, practices and opportunities to learn;
  • identifies and nourishes new ideas that arise in the cluster organizations – such as organizing temporal cross-organizational knowledge-building activities for innovation;
  • provides, evolves and matures professional norms and guidelines;
  • initiates service-based value networks between member organizations;
  • detects proximities between cluster members;
  • promotes the learning culture at work that increases social motivation  – the more users are involved, the more likely it is that system becomes effective and is self-organizing;
  • controls organizational learning with incentives and motivation-management (policies for accreditation possibilities, and validation of workplace learning experiences).

Formal and informal cross-organizational networks are important to transfer knowledge.

The learning services the cluster can initiate depend on the abundance of certain learning service exemplars and of the learning service prototypes and niches at present in the socio-technical system.

Ecosystem principles applicable in learning ecosystems

The first principle in ecology is that the flow of energy and the exchange of matter through open ecosystem is regulated by the interactions of species (in our case types of learning services) and the abiotic component (by the web of energy and matter). Reyna conceptualized “teaching and learning” as this energy that empowers digital learning ecosystems to changing “information to knowledge”. The permeability of a digital learning ecosystem to the export and/or import of information and knowledge depend on the nature of the ‘architecture’ of the components of the system (e. g. connectivity, clustering), the characteristics of species, and their diversity and distribution, and interactions between them (such as commensalism).

The second important ecological principle is existence of the feedback loop to and from the environment that enables species to be adaptive to the environment and the environment to change as a result of species. A recent literature in evolutionary theory elaborates the notion of niche construction as an ecological factor that enables organisms to contribute for and benefit from environmental information. If organisms evolve in response to selection pressures modified by themselves and their ancestors, there is feedback in the system. In our approach to digital learning ecosystems, the “service-species” are activated by users with different roles (learner, facilitator) and their learning intentions. The niches for each service-species in the digital ecosystem may be collected from user-behavior, for example by learning analytics (an emerging approach to tracing digital footprints of learners and groups, visualizing the learning-related patterns).

Applications in social semantic systems: 

Niches are vector spaces – see paper From vector spaces to meanings

If we make use of the Connectionism approach to concept-processing (see the paper of Seitlinger et al, 2013) and extend this approach to epistemic and collective distributed cognition that happens in using mobile learning tools together with social semantic server, we may have an approach for socio-semantic recommendations that provide help based on the meaning niches that fit best to the requests (see the examples below).

In biology the figures for niche breadth figures are used, that may be useful in recommendation, also the idea of fitness landscape and attraction basins may be considers in recommendations.

The third important principle that we extend from ecology to technology-enhanced learning domain is associated with the communicative interactions between species. The digital community is a naturally occurring group of “service-species” populations in e-learning ecosystem who inhabit the same habitat (but use different niches) and form temporary coalitions (communities). For example the mutualisms such as parasitism, symbiosis or commensalism may appear between service species are associated with sharing the resources and associate with our first principle (energy and matter exchanges in the network). Other type of interactions, based on communication, which assumes mutual awareness, signaling between agents (or using the accumulated signals left into the environment) may be distinguished as well.

Application cases of informal learning at work

Below, there are three informal learning and supporting behaviours that may potentially appear in socio-technical systems.


To introduce new knowledge to the newcomers the experts make use of their earlier experiences, they also utilize and evolve resources for providing help, as well as the archetypical scaffolding models in their profession, on the other hand, the help-provision increases the trust level of experts in respect of solving certain problems.ACCUMULATING EXPERTISE


Recommending – relating systemic cognition and connectionist approaches

Some issues of recommending when using the systemic (distributed) cognition approach:recommending

Seitlinger. et al., (2013). Recommending Tags with a Model of Human Categorization

Seitlinger et al.(2013) use in their recommendation model Connectionist model of cognitive processing:

Kruschke 1992 alcove model

First layer can have distributed activation. The model is initialized with equal attention strengths to all dimensions, but as the training proceeds, the model learns to allocate more attention to relevant dimensions and less to irrelevant dimensions.

Internal layer functions as agent’s cognitive niche that incorporates cultural niche for weighting. Internal layer gives weights to the nodes, each hidden node corresponds to a position in the multidimensional space. A state of activation (a) at a given time (t): The state of a set of units is usually represented by a vector of real numbers a(t). These may be binary or continuous numbers, bounded or unbounded. A frequent assumption is that the activation level of simple processing units will vary continuously between the values 0 and 1.

In biology, Hutchinson (1957) defined niche as a region (n-dimensional hypervolume) in a multi-dimensional space of environmental factors that affect the welfare of a species (in our case prototypes). Niches have been conceptualized as the collections of environmental gradients with certain ecological amplitude, where the ecological optimum marks the gradient peaks where the organisms (in our case exemplars) are most abundant.

The welfare of species can be determined by meaning-creation and action-taking possibilities in the environment.

In the gradient concept structural ecosystem properties are comprehended as concentration gradients in space and time (Müller, 1998). Any niche gradient is a peak of the fitness landscape of one environmental characteristic (Wright, 1931), which can be visualized in two-dimensional space as a graph with certain skew and width, determining the ecological amplitude. The shape of the fitness graph for certain characteristic can be plotted through the abundance of certain specimen (exemplar in our case) benefitting of this characteristic. All niche gradients are situated and establish a multi-dimensional hyper-room, which axes are different environmental parameters.

This connectionist theory problem was also explained by T. Ley in Innsbruck meeting.

Also see article From vector spaces to meanings


distributed cognition and supporting learning@work

March 14, 2014

There are two main ways in which, distributed cognition may be framed – epistemic distributed cognition and collective distributed cognition, which are mutually interrelated.

I: Person-centred view

  • Epistemic distributed cognition: distributed cognition is eminently epistemic from the persons point of view, because it deals with the very activity of knowing and understanding the world one lives in. Giere (2007) refers to this kind of distribution as locally distributed cognition.
  • Epistemic distributed cognition results in creating personal cognitive niches. Magnani (2008), and Magnani and Bardone (2008) use the term cognitive niche to mark the distributed space that people create by interrelating individual cognition and the environment through the continuous interplay through abductive processes in which they alter and modify the environment.
  • People use external resources as part of the distributed cognitive system to solve problems. They continuously offload some of their cognitive functions onto external objects and artifacts, which can just be found out-there or designed for accomplishing specific goals and tasks (this approach may be important in Captus).
  • Tacit dimension of knowledge that is different for everyone influences what one is finding worthwhile to consider as part of their cognitive system, due to the tacit knowledge persons are creating diversity and variability in their cognitive niches.
  • Some part of the cognitive niche formation may be seen as the purposeful activity – with the problem or goal in hand one tries to develop distributed cognitive structures (for example in Sharing turbine the White folders)
  • Not all what is incorporated into cognitive niche is useful at the time when it is noticed, but it may become useful later on, since much of the informal learning happens retrospectively. Learning lies outside the realm of regular expectations and involves a forward-looking attitude. We cannot entirely rely on what happened in the past, but we must inevitably look forward, projecting ourselves onto the unknown future. (For example in Bits and pieces).

II: Collective (culture, community, system) centred view

  • Collective distributed cognition is cognition where the output of a certain cognitive process cannot be attributed or tracked back to the effort of a single agent, but it is the product of collective effort. (Relate with social semantic server, also networked scaffolding)
  • Social organisation is seen as a form of cognitive architecture that determines the way information flows in the context of activity (Hollan et al., 2000).  (relate with networked scaffolding)
  • External resources – the objects, artifacts, and at-hand materials and software are temporally integrated into goal-based affordance networks (see Barab & Roth, 2006) that support actions. Barab and Roth (2006) have noted that connecting learners to ecological networks, where they can learn through engaged participation, activates the affordance networks. Affordance networks are extended in both time and space and can include sets of perceptual and cognitive affordances that collectively come to form the network for particular goal sets. Affordance networks are not entirely delimited by their material, social, or cultural structure, although one may have elements of all of these; instead, they are functionally bound in terms of the facts, concepts, tools, methods, practices, commitments, and even people that can be enlisted toward the satisfaction of a particular goal. In this way, affordance networks are dynamic socio-cultural configurations that take on particular shape as a result of material, social, political, economic, cultural, historical, and even personal factors but always in relation to particular functions.
  • The result of many self-organised cognitive activities contributes to ecological enculturation. Ecological enculturation brings the traces of previous activities available in some form for future use. It increases the anticipatedness of the environment by formation of cultural patterns as cultural niches for solving certain problems. (for example in Social Semantic Server)
  • Alexander and associates (1977) define design patterns as the visible/explicit part of a solution to a problem in a field of interest. They assume that patterns tend to focus on the interactions between the physical form of the built environment, and the way in which that inhibits or facilitates various sorts of personal and social behaviour within it (Alexander et al., 1977). Patterns are easily recognisable generalisations of solutions for a problem, that emerge as the contingent result of all the occasions there have been to renew or enrich, or to maintain the stock of this problem’s solutions, using the remains of previous constructions or destructions from individuals.
  • Culturally, each pattern exists as an emergent niche in the system. In the pattern niche the environment becomes anticipated and ecologically encultured due to many learners’ activities. There are no defined patterns one can “take” but patterns exist in an abstract way as effective niches in the encultured environment, which are evolving constantly. These niches emerge as abstract spaces and the range for the pattern niches is created as the fitness of many similar individual patterns is tested in the culture’s ecosystem.
  • Emergent enculturation, the formation of cultural niches occurs as a product of self-organised system behavior from the interactions between various types of actors and the environment. Deliberate enculturation may be done incorporating certain guidelines, and instructions for action to the system
  • When we are have a precise intent in mind, we can turn to certain patterns detectable in the collectively encultured system. (For example when we search help) Interacting with the environment having a specific learning goal, the appropriation of patterns would decrease the need to seek chances, since the ecologically encultured environment can lead you with patterns that might do the job effectively. The trivial understanding of pattern usage is, that taking a pattern it can be used as a template for repeating the pattern. However that view of pattern-replication is misleading, since pattern niches are evolving constantly. Alexander et al. (1977) calls such niches the pattern prototypes.
  • The embodiment of pattern prototypes has person-dependent and culture-dependent components and variability. Patterns can be found because they are cognitively afforded partially internal and partially culture defined multi-dimensional spaces (Zhang & Patel, 2008). Only the learner who is part of the culture can perceive the pattern niches encapsuling some problem solutions that this culture that has sorted out. An options for finding dimensions incorporated into patterns is aligning one’s attention in crowded places, looking for the traces left by others, or mimicking and uptaking others’ behaviours in the environment.  It is only known by the learner whether a collectively formed pattern facilitates something for himself, but even he does not know whether any collectively defined pattern helps him in his learning. 

III: Interrelations between personal (epistemic distributed cognition) and cultural (collective distributed cognition) cognitive niches (see figure 1)

  • Bardone (2011) suggests that human beings act as an integral part of their environment while at the same time actively modifying and constructing this environment. Niche construction as an ecological factor that enables organisms to contribute for and benefit from environmental information (Odling-Smee et al., 2003). If organisms evolve in response to selection pressures modified by themselves and their ancestors, there is feedback in the system. The feedback must persist for long enough, and with enough local consistency, to be able to have an evolutionary effect. Ecological inheritance is a modified environment influenced by organisms, their ancestors or other organism communities what has evolutionary effect and selection pressure to organisms. Ecological inheritance depends on the persistence, between generations, of whatever physical changes are caused by ancestral organisms in the local selective environments of their descendants.
  • Traditionally, enculturation refers to the process by which a person becomes acquainted with a given culture (or community of practice) (Wenger, 1998), which may be related with EDC. This is the process of adapting oneself to the cultural niches.
  • The epistemic distributed cognition comprises two loops of cognitive niche formation – the creative loop of chance-seeking uses the ecosystem unanticipatedness for chance-seeking, and chance amplification and results with personal patterns; the accommodating loop of pattern-finding builds on cultural anticipatedness and results with validating and amplifying these patterns as instances of a cultural pattern
  • The collective distributed cognition is fed by the personal patterns: the chance-seekers create personal patterns as distributed cognitive niches which serve as the destabilizers of cultural patterns that extend or shift the pattern niches, whereas pattern-finding activity validates cultural pattern niches and stabilizes the ecosystem incorporating cultural patterns as optimal collectively selected solution paths to the distributed cognitive environment of the individuals. 

Let’s illustrate this:

  • According to Schmidt, Norman and Boshuizen (1990), expertise formation is associated with the qualitative transition from a conceptually rich and traditional knowledge base and analytical approach in diagnosing to one comprised of largely experiential and non-analytical – that is a radical departure from conventional view of clinical competence development.doctorsin community

    Figure 2. Medical reasoning with new cases (differences for novice and experienced doctors)

    Medical students learn mainly from theories, based on books – the result is a propositional pathophysiological network about the disease causes and consequences in terms of pathophysiological processes – the resulting perspective on disease is rather prototypical, with limited understanding of the variability with which disease manifests in the reality. They use many concepts to explain the phenomena. The medical guidelines have similar prototypical nature.

    In practice with patients the knowledge-in-use will reorganize itself to increase accessibility into simplified causal models explaining signs and symptoms that contain only higher-level concepts from original pathophysiological networks and their relationships. The student begins noticing contextual factors under which disease emerges  (enabling factors in script) and instead of causal processes the different features that characterize clinical appearance of the disease become the anchor points. Simultaneously list-like illness-scripts are formed that contain enabling conditions for the disease, faults and consequences. In case of diagnosing, the script is searched and verified. The script elements appear in specific order that matches the way doctors inform other doctors about their patients’ conditions. Enabling conditions in the script develop quite slowly in response to experiences in daily practice. Expert doctors make more use of constraining information than novice doctors. Because of different experiences different doctors may develop quite different scripts for the same disease. Such idiosyncratic scripts bear only superficial relationship with the prototypical disease cases.

    Finally scripts are supplemented with elaborated instances. Experienced doctors use in diagnosing the case similarity – the new case is mapped to previous patient case – this is a pattern recognition process. “The problems have the life of their own” a large part of expertise appears to consist of matching a problem with similar ones seen before.

    The scripts and elaborated instances at the collective level would form the “living guidelines”.

    In case of such dynamic pattern search and recognition, pattern-instance validation and collective pattern formation process the critical issue is whether novice will understand the support that is provided using the way experts way of structuring knowledge, and against which knowledge structure (prototypical, script or elaborated instances) the validation will be processed.


Two Concept definitions and distributed cognition in informal learning

February 14, 2014

At Learning Layers meeting we had the session for theory that guides the project’s technologies and approaches for informal learning at work.

Tobias Ley explained with the figure how the two ways how the concept has been dealt with.


The upper figure relates with the semantic systems that use top-down ontologies for providing support i finding resources for learning.  It explains how real world objects or resources in the web are represented internally and represented by the annotations (tags). Such a model for concepts enables creating ontologies that define the relations of objects. The ontologies that guide learning may be considered as archetypical models – some of them are based on common knowledge and serve as community recommendation structures, others’ have become standards and work as top-down obligational constraints to guide with the recommendations the activities with the related objects.



The bottom figure describes the object representations through concept-vectors.

I think this view is ecology-driven. The description of an object – the concept perception through vectors of certain  properties (tags) – may be considered as one “organism”, whereas all the object conceptualizations in the (learning) community create the object’s description as a “species” –  and this “species” is fit within the niche described by the vector space described by individuals in certain time moment. The most frequent tags create the part of the niche that is community-specific or stabile and may be considered as an archetypical model.  The borders for community’s archetypical model within the whole niche are perceptional, and may be related with the frequency of certain “organisms” in time period, as well as the community members’ validation to certain “organisms”. (acknowledged or core members’ concepts may be considered more credible than newcomers’ ones and determine the community archetypical model)

If someone searches help from the concept niche defined by the (learning) community, his own concept definition may be less or more fit to this concept niche and its most frequently used areas (the archetypical model).  Adaptive learner may try to accommodate to the archetypical models in the niche – it means following the meaning-patterns defined by many. This learning behavior that may be called pattern appropriation is one of the distributed cognitive behaviors when individual learners orient themselves (or may be automatically guided by) the encultured niches in the meaning ecosystem.

Another interesting thought is, if the concept niche is simultaneously provided to the learner through two niches – as the standard archetypical model and the community-defined archetypical model. The standard archetypical model is usually stabile, while the community-defined model depends of the usage contexts of the concept that are changing dynamically. In this situation the learner’s own concept definition has to “decide” in which niche it is more fit. I think it explains why the community niche of concepts is always having the competitive edge over the standards niche – it requires less cognitive effort to stay using the community-defined archetypical model rather than adopting the personal meaning concepts towards fitting to the niche of the standard archeotypical model.

Yet, if one could see the visualization to what extent both niches overlap, the non-fit  (or out of standard niche) parts (tags?) of own  concepts could be consciously detected and abandoned in order to adopt own concepts to the arceotypical models.

In some conditions it is actually not useful to stay in the rigid and timely not updated standard niche, but rather to let oneself be guided by the context-tested niche of the community defined archetypical model.  This model (and the relevant niche) is less mature in this sense that it may contain areas what are not sufficiently proven to be useful. But it may contain also more useful areas than the standard niche.

In our discussions with Emanuele Bardone we defined two distributed cognitive behaviors – pattern appropriation clearly relates with the niches as pattern-spaces. Every person repeats for himself certain  meanings for the concept, and actually therefore creates the personal cognitive niche that is a vector space defined by these trial usages of the concept. The personal cognitive space can be located somewhere within the community and normative niches. It seems cognitively easier to be staying mostly within the range of his own cognitive niche, especially if it is fit to the cultural/standard archetypical niches.

But there is also another behaviour – chance-seeking that is extending one’s cognitive niche with new elements, adapting to be more fit. The chance-seeking can be used for extending the community defined archetypes for the concept.  The chance-seeking may be made conscious by visualizing the chance cases that appear outside the current personal cognitive niche. Chance amplification would then mean consciously repeating such cases, testing their viability empirically to extend one’s cognitive niche.

Chance amplification becomes the collective process of distributed cognition  when one can see the changes in his cognitive niche in the cognitive landscape of the community (the standard- and community niches of the archetypes) and get recommendations from those community niches. Several persons contribute to these community niches dynamically by sharing their concept-instances (“organisms”) and can be simultaneously aware of others’ chance-seeking events, if these are made explicit. The collectively empowered chance amplification increases the possibility that positive chances would be incorporated to the community niches.

Let’s illustrate all this: There is a standard treatment procedure in medicine that has to be followed for certain disease (standard archetype). As this is tested out by the doctors in actual practice sometimes it works, sometimes it seems not fit to the actual situations. The doctor at every patient’s case creates for himself the description how to do the treatment and this builds up the personal cognitive niche for this disease treatment. The doctor has learned the standards of treatment. Maybe the doctor also discusses the deviation-cases with other doctors. The cognitive niche of this doctor then incorporates and is embedded within the standard treatment niche as well as the community-defined niche. I think for the person these become inseparable. At some moments the doctor becomes aware of that the new case does not fit to his previous cognitive niche and the chances he creates as new treatment must be validated. One way of collective chance validation is seeing if someone else in the community has already tested the similar new treatment, another is making his chance case known to others for validation. In both cases the chance amplification is collectively empowered. And it is more likely that collectively empowered chances will extend the cognitive niches of many persons and thus become common and get incorporated to the arhetypical models of the community niches.